Path: blob/master/Part 5 - Association Rule Learning/Apriori/[R] Apriori.ipynb
1347 views
Kernel: R
Apriori
Data Preprocessing
In [1]:
In [2]:
Out[2]:
In [3]:
Out[3]:
Data contain 120 products.
In [14]:
In [5]:
Out[5]:
distribution of transactions with duplicates:
1
5
There are 5 transactions with 1 duplicates each.
In [6]:
Out[6]:
transactions as itemMatrix in sparse format with
7501 rows (elements/itemsets/transactions) and
119 columns (items) and a density of 0.03288973
most frequent items:
mineral water eggs spaghetti french fries chocolate
1788 1348 1306 1282 1229
(Other)
22405
element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1754 1358 1044 816 667 493 391 324 259 139 102 67 40 22 17 4
18 19 20
1 2 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 3.914 5.000 20.000
includes extended item information - examples:
labels
1 almonds
2 antioxydant juice
3 asparagus
In [7]:
Out[7]:
Training Apriori on the dataset
In [11]:
Out[11]:
In [12]:
Out[12]:
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
0.2 0.1 1 none FALSE TRUE 5 0.003733333 1
maxlen target ext
10 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 28
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s].
sorting and recoding items ... [115 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [916 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
Visualization of the result
In [13]:
Out[13]:
lhs rhs support
[1] {mineral water,whole wheat pasta} => {olive oil} 0.003866151
[2] {light cream} => {chicken} 0.004532729
[3] {pasta} => {escalope} 0.005865885
[4] {pasta} => {shrimp} 0.005065991
[5] {chocolate,herb & pepper} => {ground beef} 0.003999467
[6] {eggs,ground beef} => {herb & pepper} 0.004132782
[7] {whole wheat pasta} => {olive oil} 0.007998933
[8] {herb & pepper,spaghetti} => {ground beef} 0.006399147
[9] {herb & pepper,mineral water} => {ground beef} 0.006665778
[10] {frozen vegetables,soup} => {milk} 0.003999467
confidence lift count
[1] 0.4027778 6.115863 29
[2] 0.2905983 4.843951 34
[3] 0.3728814 4.700812 44
[4] 0.3220339 4.506672 38
[5] 0.4411765 4.490183 30
[6] 0.2066667 4.178455 31
[7] 0.2714932 4.122410 60
[8] 0.3934426 4.004360 48
[9] 0.3906250 3.975683 50
[10] 0.5000000 3.858539 30